Primate Basal Ganglia
   HOME

TheInfoList



OR:

The
basal ganglia The basal ganglia (BG), or basal nuclei, are a group of subcortical nuclei, of varied origin, in the brains of vertebrates. In humans, and some primates, there are some differences, mainly in the division of the globus pallidus into an extern ...
form a major brain system in all species of vertebrates, but in primates (including humans) there are special features that justify a separate consideration. As in other vertebrates, the primate basal ganglia can be divided into striatal,
pallidal The globus pallidus (GP), also known as paleostriatum or dorsal pallidum, is a subcortical structure of the brain. It consists of two adjacent segments, one external, known in rodents simply as the globus pallidus, and one internal, known in rod ...
,
nigral The substantia nigra (SN) is a basal ganglia structure located in the midbrain that plays an important role in reward and movement. ''Substantia nigra'' is Latin for "black substance", reflecting the fact that parts of the substantia nigra app ...
, and subthalamic components. In primates, however, there are two pallidal subdivisions called the
external globus pallidus The external globus pallidus (GPe or lateral globus pallidus) combines with the internal globus pallidus (GPi) to form the globus pallidus, an anatomical subset of the basal ganglia. Globus pallidus means "pale globe" in Latin, indicating its appea ...
(GPe) and
internal globus pallidus The internal globus pallidus (GPi or medial globus pallidus; in rodents its homologue is known as the entopeduncular nucleus) and the external globus pallidus (GPe) make up the globus pallidus. The GPi is one of the output nuclei of the basal gang ...
(GPi). Also in primates, the dorsal striatum is divided by a large
tract Tract may refer to: Geography and real estate * Housing tract, an area of land that is subdivided into smaller individual lots * Land lot or tract, a section of land * Census tract, a geographic region defined for the purpose of taking a census ...
called the
internal capsule The internal capsule is a white matter structure situated in the inferomedial part of each cerebral hemisphere of the brain. It carries information past the basal ganglia, separating the caudate nucleus and the thalamus from the putamen and the g ...
into two masses named the
caudate nucleus The caudate nucleus is one of the structures that make up the corpus striatum, which is a component of the basal ganglia in the human brain. While the caudate nucleus has long been associated with motor processes due to its role in Parkinson's di ...
and the
putamen The putamen (; from Latin, meaning "nutshell") is a round structure located at the base of the forebrain (telencephalon). The putamen and caudate nucleus together form the dorsal striatum. It is also one of the structures that compose the basal n ...
—in most other species no such division exists, and only the striatum as a whole is recognized. Beyond this, there is a complex circuitry of connections between the striatum and cortex that is specific to primates. This complexity reflects the difference in functioning of different cortical areas in the primate brain.
Functional imaging Functional imaging (or physiological imaging) is a medical imaging technique of detecting or measuring changes in metabolism, blood flow, regional chemical composition, and absorption. As opposed to structural imaging, functional imaging center ...
studies have been performed mainly using human subjects. Also, several major
degenerative diseases Degenerative disease is the result of a continuous process based on degenerative cell changes, affecting biological tissue, tissues or Organ (anatomy), organs, which will increasingly deteriorate over time. In neurodegenerative diseases, cells of ...
of the basal ganglia, including
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms usually emerge slowly, and as the disease worsens, non-motor symptoms becom ...
and
Huntington's disease Huntington's disease (HD), also known as Huntington's chorea, is a neurodegenerative disease that is mostly inherited. The earliest symptoms are often subtle problems with mood or mental abilities. A general lack of coordination and an unst ...
, are specific to humans, although "models" of them have been proposed for other species.


Corticostriatal connection

A major output from the cortex, with axons from most of the cortical regions connecting to the striatum, is called the corticostriatal connection, part of the
cortico-basal ganglia-thalamo-cortical loop The cortico-basal ganglia-thalamo-cortical loop (CBGTC loop) is a system of neural circuits in the brain. The loop involves connections between the cortex, the basal ganglia, the thalamus, and back to the cortex. It is of particular relevance t ...
. In the primate most of these axons are thin and unbranched. The striatum does not receive axons from the primary olfactory, visual or auditory cortices. The corticostriatal connection is an excitatory
glutamatergic Glutamatergic means "related to glutamate". A glutamatergic agent (or drug) is a chemical that directly modulates the excitatory amino acid (glutamate/ aspartate) system in the body or brain. Examples include excitatory amino acid receptor agonist ...
pathway. One small cortical site can project many axon branches to several parts of the striatum.


Striatum

The
striatum The striatum, or corpus striatum (also called the striate nucleus), is a nucleus (a cluster of neurons) in the subcortical basal ganglia of the forebrain. The striatum is a critical component of the motor and reward systems; receives glutamate ...
is the largest structure of the basal ganglia.


Structure


Neuronal constitution

Medium spiny neuron Medium spiny neurons (MSNs), also known as spiny projection neurons (SPNs), are a special type of GABAergic inhibitory cell representing 95% of neurons within the human striatum, a basal ganglia structure. Medium spiny neurons have two primary ...
s (MSN)s, account for up to 95 per cent of the striatal neurons. There are two populations of these projection neurons, MSN1 and MSN2, both of which are inhibitory
GABAergic In molecular biology and physiology, something is GABAergic or GABAnergic if it pertains to or affects the neurotransmitter GABA. For example, a synapse is GABAergic if it uses GABA as its neurotransmitter, and a GABAergic neuron produces GABA. A ...
. There are also various groups of GABAergic interneurons and a single group of cholinergic interneurons. These few types are responsible for the reception, processing, and relaying of all the cortical input. Most of the
dendritic spine A dendritic spine (or spine) is a small membranous protrusion from a neuron's dendrite that typically receives input from a single axon at the synapse. Dendritic spines serve as a storage site for synaptic strength and help transmit electrical si ...
s on the medium spiny neurons synapse with cortical afferents and their axons project numerous collaterals to other neurons. The
cholinergic Cholinergic agents are compounds which mimic the action of acetylcholine and/or butyrylcholine. In general, the word "choline" describes the various quaternary ammonium salts containing the ''N'',''N'',''N''-trimethylethanolammonium cation. F ...
interneurons of the primate, are very different from those of non-primates. These are said to be tonically active. The dorsal striatum and the ventral striatum have different populations of the cholinergic interneurons showing a marked difference in shape.


Physiology

Unless stimulated by cortical input the striatal neurons are usually inactive.


Levels of organisation

The striatum is one mass of grey matter that has two different parts, a ventral and a dorsal part. The dorsal striatum contains the caudate nucleus and the putamen, and the ventral striatum contains the
nucleus accumbens The nucleus accumbens (NAc or NAcc; also known as the accumbens nucleus, or formerly as the ''nucleus accumbens septi'', Latin for "nucleus adjacent to the septum") is a region in the basal forebrain rostral to the preoptic area of the hypotha ...
and the
olfactory tubercle The olfactory tubercle (OT), also known as the tuberculum olfactorium, is a multi-sensory processing center that is contained within the olfactory cortex and ventral striatum and plays a role in reward cognition. The OT has also been shown to ...
. The
internal capsule The internal capsule is a white matter structure situated in the inferomedial part of each cerebral hemisphere of the brain. It carries information past the basal ganglia, separating the caudate nucleus and the thalamus from the putamen and the g ...
is seen as dividing the two parts of the dorsal striatum. Sensorimotor input is mostly to the putamen. An
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement f ...
input goes to the caudate nucleus and possibly to the nucleus accumbens. There are two different components of the striatum differentiated by
staining Staining is a technique used to enhance contrast in samples, generally at the microscopic level. Stains and dyes are frequently used in histology (microscopic study of biological tissues), in cytology (microscopic study of cells), and in the ...
– striosomes and a matrix. Striosomes are located in the matrix of the striatum and these contain
μ-opioid receptor The μ-opioid receptors (MOR) are a class of opioid receptors with a high affinity for enkephalins and beta-endorphin, but a low affinity for dynorphins. They are also referred to as μ(''mu'')-opioid peptide (MOP) receptors. The prototypical Π...
s and
dopamine receptor D1 Dopamine receptor D1, also known as DRD1. It is one of the two types of D1-like receptor family - receptors D1 and D5. It is a protein that in humans is encoded by the DRD1 gene. Tissue distribution D1 receptors are the most abundant kind of do ...
binding sites. The
striatopallidal fibers The striatopallidal fibres, also Wilson's pencils, pencil fibres of Wilson, and pencils of Wilson, are prominent myelinated fibres that connect the striatum to the globus pallidus. Their distinctive appearance allows the putamen to be identified ...
give a connection from the putamen to the
globus pallidus The globus pallidus (GP), also known as paleostriatum or dorsal pallidum, is a subcortical structure of the brain. It consists of two adjacent segments, one external, known in rodents simply as the globus pallidus, and one internal, known in rod ...
and substantia nigra.


Connectomics

Unlike the inhibitory GABAergic neurons in the neocortex that only send local connections, in the striatum these neurons send long axons to targets in the
pallidum The globus pallidus (GP), also known as paleostriatum or dorsal pallidum, is a subcortical structure of the brain. It consists of two adjacent segments, one external, known in rodents simply as the globus pallidus, and one internal, known in rod ...
and substantia nigra. A study in
macaque The macaques () constitute a genus (''Macaca'') of gregarious Old World monkeys of the subfamily Cercopithecinae. The 23 species of macaques inhabit ranges throughout Asia, North Africa, and (in one instance) Gibraltar. Macaques are principally ...
s showed that the medium spiny neurons have several targets. Most striatal axons first target the GPe, some of these also target the GPi and both parts of the substantia nigra. There are no single axon projections to either the GPi, or to the SN, or to both of these areas; only connecting as continuing targets via axon collaterals from the striatum to the GPe. The only difference between the axonal
connectome A connectome () is a comprehensive map of neural connections in the brain, and may be thought of as its "wiring diagram". An organism's nervous system is made up of neurons which communicate through synapses. A connectome is constructed by tr ...
s of the striosomes and the axons of those neurons in the matrix, is in the numbers of their branching axons. Striosomal axons cross the extent of the SN, and in macaques emit 4 to 6 vertical collaterals that form vertical columns which enter deep into the SN pars compacta (SNpc); the axons from those in the matrix are more sparsely branched. This pattern of connectivity is problematic. The main mediator of the striatopallidonigral system is GABA and there are also
cotransmitters Neurotransmission (Latin: ''transmissio'' "passage, crossing" from ''transmittere'' "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron), ...
. The GPe stains for
met-enkephalin Met-enkephalin, also known as metenkefalin (INN), sometimes referred to as opioid growth factor (OGF), is a naturally occurring A natural product is a natural compound or substance produced by a living organism—that is, found in nature. In ...
, the GPi stains for either
substance P Substance P (SP) is an undecapeptide (a peptide composed of a chain of 11 amino acid residues) and a member of the tachykinin neuropeptide family. It is a neuropeptide, acting as a neurotransmitter and as a neuromodulator. Substance P and its clos ...
or
dynorphin Dynorphins (Dyn) are a class of opioid peptides that arise from the precursor protein prodynorphin. When prodynorphin is cleaved during processing by proprotein convertase 2 (PC2), multiple active peptides are released: dynorphin A, dynorphin B, a ...
or both, and the SN stains for both. This probably means that a single axon is able to concentrate different co-mediators in different subtrees, depending on the target.


Selectivity of striatal territories for targets

A study of the percentage of striatal axons from the sensorimotor (dorsolateral putamen) and associative striatum (caudate nucleus and ventromedial putamen) to the globus pallidus found important differences. The GPe for instance receives a large input of axons from the associative areas. The GPi is strongly sensorimotor connected. The SN is at first associative. This is confirmed by the effects of striatal stimulations. All the projections from the primary somatosensory cortex to the putamen, avoid the striosomes and innervate areas within the matrix.


Pallidonigral set and pacemaker


Constitution

The pallidonigral set comprises the direct targets of the striatal axons: the two nuclei of the pallidum, and the
pars compacta The pars compacta (SNpc) is a portion of the ''substantia nigra'', located in the midbrain. It is formed by dopaminergic neurons and located medial to the pars reticulata. Parkinson's disease is characterized by the death of dopaminergic neurons ...
(SNpc) and
pars reticulata The pars reticulata (SNpr) is a portion of the substantia nigra and is located lateral to the pars compacta. Most of the neurons that project out of the pars reticulata are inhibitory GABAergic neurons (i.e., these neurons release GABA, which is ...
(SNpr) of the substantia nigra. One character of this ensemble is given by the very dense striato-pallidonigral bundle giving it its whitish aspect (pallidus means pale). After Foix and Nicolesco (1925) and some others, Cécile and Oskar Vogt (1941) Cécile and
Oskar Vogt Oskar Vogt (6 April 1870, in Husum – 30 July 1959, in Freiburg im Breisgau) was a German physician and neurologist. He and his wife Cécile Vogt-Mugnier are known for their extensive cytoarchetectonic studies on the brain. Personal life He w ...
(1941)
suggested the term pallidum - also used by the Terminologia Anatomica (1998). They also proposed the term nigrum for replacing nigra, which is indeed not a substance; but this is generally not followed. The whole pallidonigral set is made up the same neuronal components. The majority is made up of very large neurons, poorly branched, strongly stained for parvalbumin, having very large dendritic arborisations (much larger in primates than in rodents) with straight and thick dendrites.Yelnik ''et al.'', 1987 Only the shape and direction of the dendritic arborizations differ between the pallidum and the SN neurons. The pallidal dendritic arborisations are very large flat and disc-shaped.Yelnik ''et al.'', 1984 Their principal plane is parallel to the others and also parallel to the lateral border of the pallidum; thus perpendicular to the axis of the afferences.Percheron ''et al.'', 1984 Since the pallidal discs are thin, they are crossed only for a short distance by striatal axons. However, since they are wide, they are crossed by many striatal axons from wide striatal parts. Since they are loose, the chances of contact are not very high. Striatal arborisations emit perpendicular branches participating in flat bands parallel to the lateral border, which increases the density of synapses in this direction. This is true for not only for the striatal afferent but also for the subthalamic (see below). The synaptology of the set is uncommon and characteristic.Fox ''et al.'', 1974 The dendrites of the pallidal or nigral axons are entirely covered by synapses, without any apposition of glia. More than 90% of synapses are of striatal origin. One noticeable property of this ensemble is that not one of its elements receives cortical afferents. Initial collaterals are present. However, in addition to the presence of various appendages at the distal extremity of the pallidal neuronsdi Figlia ''et al.'', 1982François ''et al.'', 1984 that could act as elements of local circuitry, there are weak or no functional interrelations between pallidal neurons.


External globus pallidus

The
external globus pallidus The external globus pallidus (GPe or lateral globus pallidus) combines with the internal globus pallidus (GPi) to form the globus pallidus, an anatomical subset of the basal ganglia. Globus pallidus means "pale globe" in Latin, indicating its appea ...
(GPe) or lateral globus pallidus, is flat, curved and extended in depth and width. The branching dendritic trees are disc-shaped, flat, run parallel to each other and to the pallidum border, and are perpendicular to those axons coming from the striatum. The GPe also receives input from the subthalamic nucleus, and dopaminergic input from the SNpc. The GPe does not give output to the thalamus only intrasystemically connecting to the other basal ganglia structures. It can be seen as a GABA inhibitory mediator regulating the basal ganglia. Its firing activity is very fast and exhibits long intervals of up to several seconds of silence.DeLong, 1971 In monkeys an initial inhibition was seen in response to striatal input, followed by a regulated excitation. In the study this suggested that the excitation was used temporarily to control the magnitude of the incoming signal and to spatially focus this into a limited number of pallidal neurons.Tremblay and Filion 1989 GPe neurons are often multi-targeted and may respond to a number of neuron types. In macaques, axons from the GPe to the striatum account for about 15%; those to the GPi, SNpr and subthalamic nucleus are about 84%. The subthalamic nucleus was seen to be the preferred target which also sends most of its axons to the GPe.Sato ''et al.'' (2000)


Internal globus pallidus

The
internal globus pallidus The internal globus pallidus (GPi or medial globus pallidus; in rodents its homologue is known as the entopeduncular nucleus) and the external globus pallidus (GPe) make up the globus pallidus. The GPi is one of the output nuclei of the basal gang ...
(GPi) or medial globus pallidus is only found in the primate brain and so is a younger portion of the globus pallidus. Like the GPe and the substantia nigra the GPi is a fast-spiking pacemaker but its activity does not show the long intervals of silence seen in the others.Mink and Thach, 1991 In addition to the striatal input there is also dopaminergic input from the SNpc. Unlike the GPe the GPi does have a thalamic output and a smaller output towards the
habenula In neuroanatomy, habenula (diminutive of Latin ''habena'' meaning rein) originally denoted the stalk of the pineal gland (pineal habenula; pedunculus of pineal body), but gradually came to refer to a neighboring group of nerve cells with which the ...
. It also gives output to other areas including the
pedunculopontine nucleus The pedunculopontine nucleus (PPN) or pedunculopontine tegmental nucleus (PPT or PPTg) is a collection of neurons located in the upper pons in the brainstem. It lies caudal to the substantia nigra and adjacent to the superior cerebellar peduncle. ...
and to the area behind the
red nucleus The red nucleus or nucleus ruber is a structure in the rostral midbrain involved in motor coordination. The red nucleus is pale pink, which is believed to be due to the presence of iron in at least two different forms: hemoglobin and ferritin. ...
. The evolutionary increase of the internal pallidus also brought an associated increase in the
pallidothalamic tracts The pallidothalamic tracts (or pallidothalamic connections) are a part of the basal ganglia. They provide connectivity between the internal globus pallidus (GPi) and the thalamus, primarily the ventral anterior nucleus and the ventral lateral nucle ...
, and the appearance of the
ventral lateral nucleus The ventral lateral nucleus (VL) is a nucleus in the ventral nuclear group of the thalamus. Inputs and outputs It receives neuronal inputs from the basal ganglia which includes the substantia nigra and the globus pallidus (via the thalamic fascicu ...
in the thalamus. The mediator is GABA.


Substantia nigra

The substantia nigra is made up of two parts, the
pars compacta The pars compacta (SNpc) is a portion of the ''substantia nigra'', located in the midbrain. It is formed by dopaminergic neurons and located medial to the pars reticulata. Parkinson's disease is characterized by the death of dopaminergic neurons ...
(SNpc) and the
pars reticulata The pars reticulata (SNpr) is a portion of the substantia nigra and is located lateral to the pars compacta. Most of the neurons that project out of the pars reticulata are inhibitory GABAergic neurons (i.e., these neurons release GABA, which is ...
(SNpr), sometimes there is a reference to the pars lateralis but that is usually included as part of the pars reticulata. The ‘’black substance’’ that the term translates as, refers to the
neuromelanin Neuromelanin (NM) is a dark pigment found in the brain which is structurally related to melanin. It is a polymer of Melanin#Eumelanin, 5,6-dihydroxyindole monomers. Neuromelanin is found in large quantities in catecholaminergic cell groups, catecho ...
found in the dopaminergic neurons. These are found in a darker region of the SNpc. The SNpr is a lighter coloured region. There are similar cells in the substantia nigra and the globus pallidus. Both parts receive input from the
striatopallidal fibres The striatopallidal fibres, also Wilson's pencils, pencil fibres of Wilson, and pencils of Wilson, are prominent myelinated fibres that connect the striatum to the globus pallidus. Their distinctive appearance allows the putamen to be identified o ...
.


Pars compacta

The pars compacta is the most lateral part of the substantia nigra and sends axons to the
superior colliculus In neuroanatomy, the superior colliculus () is a structure lying on the roof of the mammalian midbrain. In non-mammalian vertebrates, the homologous structure is known as the optic tectum, or optic lobe. The adjective form ''tectal'' is commonly ...
. The neurons have high firing rates which make them a fast-spiking pacemaker and they are involved in ocular
saccade A saccade ( , French for ''jerk'') is a quick, simultaneous movement of both eyes between two or more phases of fixation in the same direction.Cassin, B. and Solomon, S. ''Dictionary of Eye Terminology''. Gainesville, Florida: Triad Publishi ...
s.


Pars reticulata

The border between the SNpc and SNpr is highly convoluted with deep fringes. Its neuronal genus is the same as that of the pallidum, with the same thick and long dendritic trees. It receives its synapses from the striatum in the same way as the pallidum. Striatonigral axons from the striosomes may form columns vertically oriented entering deeply in the SNpr. The ventral dendrites of the SNpc from the reverse direction go also deeply in it. The SN also send axons to the
pedunculopontine nucleus The pedunculopontine nucleus (PPN) or pedunculopontine tegmental nucleus (PPT or PPTg) is a collection of neurons located in the upper pons in the brainstem. It lies caudal to the substantia nigra and adjacent to the superior cerebellar peduncle. ...
. and to the parafascicular part of the central complex. The SNpr is another "fast-spiking pacemaker"Surmeier ''et al.'' 2005 Stimulations provoke no movements. Confirming anatomical data, few neurons respond to passive and active movements (there is no sensorimotor map) "but a large proportion shows responses that may be related to memory, attention or movement preparation" that would correspond to a more elaborate level than that of the medial pallidum. In addition to the massive striatopallidal connection, the SNpr receives a dopamine innervation from the SNpc and glutamatergic axons from the pars parafascicularis of the central complex. It sends nigro-thalamic axons. There is no conspicuous nigro-thalamic bundle. Axons arrive medially to the pallidal afferences at the anterior and most medial part of the lateral region of the thalamus: the
ventral anterior nucleus The ventral anterior nucleus (VA) is a nucleus of the thalamus. It acts with the anterior part of the ventral lateral nucleus to modify signals from the basal ganglia. Inputs and outputs The ventral anterior nucleus receives neuronal inputs from t ...
(VA) differentiated from the
ventral lateral nucleus The ventral lateral nucleus (VL) is a nucleus in the ventral nuclear group of the thalamus. Inputs and outputs It receives neuronal inputs from the basal ganglia which includes the substantia nigra and the globus pallidus (via the thalamic fascicu ...
(VL) receiving pallidal afferences. The mediator is GABA.


Striatopallidonigral connection

The striatopallidonigral connection is a very particular one. It engages the totality of spiny striatal axons. Estimated numbers are 110 million in man, 40 in chimpanzees and 12 in macaques.Percheron ''et al.'' (1987) The striato-pallido-nigral bundle is made up of thin, poorly myelinated axons from the striatal spiny neurons grouped into pencils "converging like the spokes of a wheel" (Papez, 1941). It gives its "pale" aspect to the receiving areas. The bundle strongly stains for iron using
Perls' Prussian blue In histology, histopathology, and clinical pathology, Perls Prussian blue is a commonly used method to detect the presence of iron in tissue or cell samples. Perls Prussian Blue derives its name from the German pathologist Max Perls (1843–1881 ...
(in addition to iron it contains many heavy metals including
cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, pr ...
,
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
,
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
and
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
).


Convergence and focusing

After the huge reduction in number of neurons between the cortex and the striatum (see corticostriate connection), the striatopallido-nigral connection is a further reduction in the number of transmitting compared to receiving neurons. Numbers indicate that, for 31 million striatal spiny neurons in macaques, there are only 166000 lateral pallidal neurons, 63000 medial pallidal, 18000 lateral nigral and 35000 in the pars reticulata. If the number of striatal neurons is divided by their total number, as an average, each target neuron may receive information from 117 striatal neurons. (Numbers in man lead to about the same ratio). A different approach starts from the mean surface of the pallidonigral target neurons and the number of synapses that they may receive. Each pallidonigral neuron may receive 70000 synapses. Each striatal neuron may contribute 680 synapses. This leads again to an approximation of 100 striatal neurons for one target neuron. This represents a huge, infrequent, reduction in neuronal connections. The consecutive compression of maps cannot preserve finely distributed maps (as in the case for instance of sensory systems). The fact that a strong anatomical possibility of convergence exists does not means that this is constantly used. A recent modeling study starting from entirely 3-d reconstructed pallidal neurons showed that their morphology alone is able to create a center-surround pattern of activity. Physiological analyses have shown a central inhibition/peripheral excitation pattern, able of focusing the pallidal response in normal conditions. Percheron and Filion (1991) thus argued for a "dynamically focused convergence".Percheron and Filion (1991) Disease, is able to alter the normal focusing. In monkeys intoxicated by
MPTP MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is a prodrug to the neurotoxin MPP+, which causes permanent symptoms of Parkinson's disease by destroying dopaminergic neurons in the substantia nigra of the brain. It has been used to study d ...
, striatal stimulations lead to a large convergence on pallidal neurons and a less precise mapping. Focusing is not a property of the striatopallidal system. But, the very particular and contrasted geometry of the connection between striatal axons and pallidonigral dendrites offers particular conditions (the possibility for a very large number of combinations through local additions of simultaneous inputs to one tree or to several distant foci for instance). The disfocusing of the system is thought to be responsible for most of the parkinsonian series symptoms. The mechanism of focusing is not known yet. The structure of the dopaminergic innervation does not seem to allow it to operate for this function. More likely focusing is regulated by the upstream striatopallidal and corticostriatal systems.


Synaptology and combinatory

The synaptology of the striato- pallidonigral connection is so peculiar as to be recognized easily. Pallidonigral dendrites are entirely covered with synapses without any apposition of glia. This gives in sections characteristic images of "pallissades" or of "rosettes". More than 90% of these synapses are of striatal origin. The few other synapses such as the dopaminergic or the cholinergic are interspersed among the GABAergic striatonigral synapses. The way striatal axons distribute their synapses is a disputed point. The fact that striatal axons are seen parallel to dendrites as "woolly fibers" has led to exaggerate the distances along which dendrites and axons are parallel. Striatal axons may in fact simply cross the dendrite and give a single synapse. More frequently the striatal axon curves its course and follow the dendrite forming "parallel contacts" for a rather short distance. The average length of parallel contacts was found to be 55 micrometres with 3 to 10 boutons (synapses). In another type of axonal pattern the afferent axon bifurcates and gives two or more branches, parallel to the dendrite, thus increasing the number of synapses given by one striatal axon. The same axon may reach other parts of the same dendritic arborisation (forming "random cascades") With this pattern, it is more than likely that 1 or even 5 striatal axons are not able to influence (to inhibit) the activity of one pallidal neuron. Certain spatio-temporal conditions would be necessary for this, implying more afferent axons.


Pallidonigral outmaps

What is described above concerned the input map or "inmap" (corresponding to the spatial distribution of the afferent axons from one source to one target). This does not correspond necessarily to the output map or outmap (corresponding to the distribution of the neurons in relation to their axonal targets). Physiological studies and transsynaptic viral markers have shown that islands of pallidal neurons (only their cell bodies or somata, or trigger points) sending their axons through their particular thalamic territories (or nuclei) to one determined cortical target are organized into radial bands. These were assessed to be totally representative of the pallidal organisation. This is certainly not the case. Pallidum is precisely one cerebral place where there is a dramatic change between one afferent geometry and a completely different efferent one. The inmap and the outmap are totally different. This is an indication of the fundamental role of the pallidonigral set: the spatial reorganisation of information for a particular "function", which is predictably a particular reorganisation within the thalamus preparing a distribution to the cortex. The outmap of the nigra (lateralis reticulata) is less differentiated.Middleton and Strick, 2002


Pars compacta and nearby dopaminergic elements

In strict sense, the
pars compacta The pars compacta (SNpc) is a portion of the ''substantia nigra'', located in the midbrain. It is formed by dopaminergic neurons and located medial to the pars reticulata. Parkinson's disease is characterized by the death of dopaminergic neurons ...
is a part of the core of basal ganglia core since it directly receives synapses from striatal axons through the striatopallidonigral bundle. The long ventral dendrites of the pars compacta indeed plunge deep in the pars reticulata where they receive synapses from the bundle. However, its constitution, physiology and mediator contrast with the rest of the nigra. This explains why it is analysed here between the elements of the core and the regulators. Ageing leads to the blackening of its cell bodies, by deposit of melanin, visible by naked eye. This is the origin of the name of the ensemble, first "locus niger" (Vicq d'Azyr), meaning black place, and then "substantia nigra" (Sömmerring), meaning black substance.


Structure

The densely distributed neurons of the
pars compacta The pars compacta (SNpc) is a portion of the ''substantia nigra'', located in the midbrain. It is formed by dopaminergic neurons and located medial to the pars reticulata. Parkinson's disease is characterized by the death of dopaminergic neurons ...
have larger and thicker dendritic arborizations than those of the
pars reticulata The pars reticulata (SNpr) is a portion of the substantia nigra and is located lateral to the pars compacta. Most of the neurons that project out of the pars reticulata are inhibitory GABAergic neurons (i.e., these neurons release GABA, which is ...
and lateralis. The ventral dendrites descending in the pars reticulata receives inhibitory synapses from the initial axonal collaterals of pars reticulata neurons (Hajos and Greefield, 1994). Groups of dopaminergic neurons located more dorsally and posteriorly in the tegmentum are of the same type without forming true nuclei. The "cell groups A8 and A10" are spread inside the cerebral peduncule. They are not known to receive striatal afferences and are not in a topographical position to do so. The dopaminergic ensemble is thus also on this point inhomogeneous. This is another major difference with the pallidonigral ensemble. The axons of the dopaminergic neurons, that are thin and varicose, leave the nigra dorsally. They turn round the medial border of the subthalamic nucleus, enter the H2 field above the subthalamic nucleus, then cross the internal capsule to reach the upper part of the medial pallidum where they enter the pallidal laminae, from which they enter the striatum.Percheron ''et al.'', 1989 They end intensively but inhomogeneously in the
striatum The striatum, or corpus striatum (also called the striate nucleus), is a nucleus (a cluster of neurons) in the subcortical basal ganglia of the forebrain. The striatum is a critical component of the motor and reward systems; receives glutamate ...
, rather in the matrix of the anterior part and rather in the striosomes dorsalwards. These authors insit on the extrastriatal dopaminergic innervation of other elements of the basal ganglia system:
pallidum The globus pallidus (GP), also known as paleostriatum or dorsal pallidum, is a subcortical structure of the brain. It consists of two adjacent segments, one external, known in rodents simply as the globus pallidus, and one internal, known in rod ...
and
subthalamic nucleus The subthalamic nucleus (STN) is a small lens-shaped nucleus in the brain where it is, from a functional point of view, part of the basal ganglia system. In terms of anatomy, it is the major part of the subthalamus. As suggested by its name, the ...
.


Physiology

Contrarily to the neurons of the pars reticulata-lateralis,
dopaminergic Dopaminergic means "related to dopamine" (literally, "working on dopamine"), dopamine being a common neurotransmitter. Dopaminergic substances or actions increase dopamine-related activity in the brain. Dopaminergic brain pathways facilitate d ...
neurons are "low-spiking pacemakers", spiking at low frequency (0,2 to 10 Hz) (below 8, Schultz). The role of the dopaminergic neurons has been the source of a considerable literature. As the pathological disappearance of the black neurons was linked to the appearance of
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms usually emerge slowly, and as the disease worsens, non-motor symptoms becom ...
, their activity was thought to be "motor" . A major discovery has been that the stimulation of the black neurons had no motor effect. Their activity is in fact linked to
reward Reward may refer to: Places * Reward (Shelltown, Maryland), a historic home in Shelltown Maryland * Reward, California (disambiguation) * Reward-Tilden's Farm, a historic home in Chestertown Maryland Arts, entertainment, and media * "Rewa ...
and prediction of reward. In a recent review (Schultz 2007), it is demonstrated that phasic responses to reward-related events, notably reward-prediction errors, ...lead to ..dopamine release..." While it is thought that there could be different behavioral processes including long time regulation. Due to its widespread distribution, the dopaminergic system may regulate the basal ganglia system in many places.


Regulators of the basal ganglia core


Subthalamic nucleus

As indicated by its name, the
subthalamic nucleus The subthalamic nucleus (STN) is a small lens-shaped nucleus in the brain where it is, from a functional point of view, part of the basal ganglia system. In terms of anatomy, it is the major part of the subthalamus. As suggested by its name, the ...
is located below the
thalamus The thalamus (from Greek θάλαμος, "chamber") is a large mass of gray matter located in the dorsal part of the diencephalon (a division of the forebrain). Nerve fibers project out of the thalamus to the cerebral cortex in all directions, ...
; dorsally to the
substantia nigra The substantia nigra (SN) is a basal ganglia structure located in the midbrain that plays an important role in reward and movement. ''Substantia nigra'' is Latin for "black substance", reflecting the fact that parts of the substantia nigra app ...
and medial to the
internal capsule The internal capsule is a white matter structure situated in the inferomedial part of each cerebral hemisphere of the brain. It carries information past the basal ganglia, separating the caudate nucleus and the thalamus from the putamen and the g ...
. The subthalamic nucleus is lenticular in form and of homogeneous aspect. It is made up of a particular neuronal species having rather long ellipsoid dendritic arborisations, devoid of spines, mimicking the shape of the whole nucleus. The subthalamic neurons are "fast-spiking pacemakers" spiking at 80 to 90 Hz. There are also about 7,5% of GABA microneurons participating in the local circuitry. The subthalamic nucleus receives its main afference from the lateral pallidum. Another afference comes from the cerebral cortex (glutamatergic), particularly from the motor cortex, which is too much neglected in models. A cortical excitation, via the subthalamic nucleus provokes an early short latency excitation leading to an inhibition in pallidal neurons. Subthalamic axons leave the nucleus dorsally. Except for the connection to the striatum (17.3% in macaques), most of the principal neurons are multitargets and feed axons to the other elements of the core of the basal ganglia. Some send axons to the substantia nigra medially and the medial and lateral nuclei of the pallidum laterally (3-target 21.3%). Some are 2-target with the lateral pallidum and the substantia nigra (2.7%) or the lateral pallidum and the medial(48%). Fewer are single target for the lateral pallidum. If one adds all those reaching this target, the main afference of the subthalamic nucleus is, in 82.7% of the cases, the lateral pallidum (external segment of the
globus pallidus The globus pallidus (GP), also known as paleostriatum or dorsal pallidum, is a subcortical structure of the brain. It consists of two adjacent segments, one external, known in rodents simply as the globus pallidus, and one internal, known in rod ...
. While striatopallidal and the pallido-subthalamic connections are inhibitory (GABA), the subthalamic nucleus utilises the excitatory
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neuro ...
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can syn ...
. Its lesion resulting in
hemiballismus Hemiballismus or hemiballism is a basal ganglia syndrome resulting from damage to the subthalamic nucleus in the basal ganglia. Hemiballismus is a rare hyperkinetic movement disorder, that is characterized by violent involuntary limb movements, ...
is known for long.
Deep brain stimulation Deep brain stimulation (DBS) is a neurosurgical procedure involving the placement of a medical device called a neurostimulator, which sends electrical impulses, through implanted electrodes, to specific targets in the brain (the brain nucleu ...
of the nucleus suppress most of the symptoms of the Parkinson' syndrome, particularly
dyskinesia Dyskinesia refers to a category of movement disorders that are characterized by involuntary muscle movements, including movements similar to tics or chorea and diminished voluntary movements. Dyskinesia can be anything from a slight tremor of t ...
induced by
dopamine therapy Dopamine therapy is the regulation of levels of the neurotransmitter dopamine through the use of either agonists, or antagonists; and has been used in the treatment of disorders characterized by a dopamine imbalance. Dopamine replacement therapy (D ...
.


Subthalamo-lateropallidal pacemaker

As said before, the lateral pallidum has purely intrinsic basal ganglia targets. It is particularly linked to the subthalamic nucleus by two-way connections. Contrary to the two output sources (medial pallidum and nigra reticulata), neither the lateral pallidum nor the subthalmic nucleus send axons to the thalamus. The
subthalamic nucleus The subthalamic nucleus (STN) is a small lens-shaped nucleus in the brain where it is, from a functional point of view, part of the basal ganglia system. In terms of anatomy, it is the major part of the subthalamus. As suggested by its name, the ...
and lateral pallidum are both fast-firing pacemakers. Together they constitute the "central pacemaker of the basal ganglia" with synchronous bursts. The pallido-subthalamic connection is inhibitory, the subthalamo-pallidal is excitatory. They are coupled regulators or coupled autonomous oscillators, the analysis of which has been insufficiently deepened. The lateral pallidum receives a lot of striatal axons, the subthalamic nucleus not. The subthalamic nucleus receives cortical axons, the pallidum not. The subsystem they make with their inputs and outputs corresponds to a classical systemic feedback circuit but it is evidently more complex.


Central region of the thalamus

The
centromedian nucleus In the anatomy of the brain, the centromedian nucleus, also known as the centrum medianum, (CM or Cm-Pf) is a part of the intralaminar thalamic nuclei (ITN) in the thalamus. There are two centromedian nuclei arranged bilaterally. In humans, it c ...
is in the central region of the thalamus. In upper primates it has three parts instead of two, with their own types of neuron. Output from here goes to the subthalamic nucleus and the putamen. Its input includes fibers from the cortex and globus pallidus.


Pedunculopontine complex

The
pedunculopontine nucleus The pedunculopontine nucleus (PPN) or pedunculopontine tegmental nucleus (PPT or PPTg) is a collection of neurons located in the upper pons in the brainstem. It lies caudal to the substantia nigra and adjacent to the superior cerebellar peduncle. ...
is a part of the
reticular formation The reticular formation is a set of interconnected nuclei that are located throughout the brainstem. It is not anatomically well defined, because it includes neurons located in different parts of the brain. The neurons of the reticular formation ...
in the brainstemMesulam ''et al.'' 1989 and a main component of the
reticular activating system The reticular formation is a set of interconnected nuclei that are located throughout the brainstem. It is not anatomically well defined, because it includes neurons located in different parts of the brain. The neurons of the reticular formatio ...
, and gives a major input to the basal ganglia. As indicated by its name, it is located at the junction between the pons and the cerebral peduncle, and near the substantia nigra. The axons are either excitatory or inhibitory and mainly target the substantia nigra. Another strong input is to the subthalamic nucleus. Other targets are the GPi and the striatum. The complex receives direct afferences from the cortex and above all abundant direct afferences from the medial pallidum (inhibitory).Percheron ''et al.'' 1998 It sends axons to the pallidal territory of the VL. The activity of the neurons is modified by movement, and precede it. All this led Mena-Segovia et al. (2004) to propose that the complex be linked in a way or another to the basal ganglia system. A review on its role in the system and in diseases is given by Pahapill and Lozano (2000). It plays an important role in awakeness and sleep. It has a dual role as a regulator of, and of being regulated by the basal ganglia.


Outputs of the basal ganglia system

In the
cortico-basal ganglia-thalamo-cortical loop The cortico-basal ganglia-thalamo-cortical loop (CBGTC loop) is a system of neural circuits in the brain. The loop involves connections between the cortex, the basal ganglia, the thalamus, and back to the cortex. It is of particular relevance t ...
the basal ganglia are interconnected, with little output to external targets. One target is the
superior colliculus In neuroanatomy, the superior colliculus () is a structure lying on the roof of the mammalian midbrain. In non-mammalian vertebrates, the homologous structure is known as the optic tectum, or optic lobe. The adjective form ''tectal'' is commonly ...
, from the
pars reticulata The pars reticulata (SNpr) is a portion of the substantia nigra and is located lateral to the pars compacta. Most of the neurons that project out of the pars reticulata are inhibitory GABAergic neurons (i.e., these neurons release GABA, which is ...
. The two other major output subsystems are to the thalamus and from there to the cortex. In the thalamus the GPimedial fibers are separated from the nigral as their terminal arborisations do not mix. The thalamus relays the nigral output to the premotor and to the frontal cortices.


Medial pallidum to thalamic VL and from there to cortex

The
thalamic fasciculus The thalamic fasciculus is a component of the subthalamus. It is synonymous with field H1 of Forel. Nerve fibres form a tract containing cerebellothalamic (crossed) and pallidothalamic (uncrossed) fibres, that is insinuated between the thalamus a ...
( H1 field) consists of fibers from the ansa lenticularis and from the
lenticular fasciculus The lenticular fasciculus is a tract connecting the globus pallidus (internus) to the thalamus and is a part of the thalamic fasciculus. It is synonymous with field H2 of Forel. The thalamic fasciculus (composed of both the lenticular fasciculus a ...
( H2 field), coming from different portions of the GPi. These tracts are collectively the pallidothalamic tracts and join before they enter the
ventral anterior nucleus The ventral anterior nucleus (VA) is a nucleus of the thalamus. It acts with the anterior part of the ventral lateral nucleus to modify signals from the basal ganglia. Inputs and outputs The ventral anterior nucleus receives neuronal inputs from t ...
of the
thalamus The thalamus (from Greek θάλαμος, "chamber") is a large mass of gray matter located in the dorsal part of the diencephalon (a division of the forebrain). Nerve fibers project out of the thalamus to the cerebral cortex in all directions, ...
. Pallidal axons have their own territory in the
ventral lateral nucleus The ventral lateral nucleus (VL) is a nucleus in the ventral nuclear group of the thalamus. Inputs and outputs It receives neuronal inputs from the basal ganglia which includes the substantia nigra and the globus pallidus (via the thalamic fascicu ...
(VL); separated from the cerebellar and nigral territories. The VL is stained for
calbindin Calbindins are three different calcium-binding proteins: calbindin, calretinin and S100G. They were originally described as vitamin D-dependent calcium-binding proteins in the intestine and kidney in the chick and mammals. They are now classi ...
and
acetylcholinesterase Acetylcholinesterase (HGNC symbol ACHE; EC 3.1.1.7; systematic name acetylcholine acetylhydrolase), also known as AChE, AChase or acetylhydrolase, is the primary cholinesterase in the body. It is an enzyme Enzymes () are proteins that a ...
. The axons ascend in the nucleus where they branch profusely.Arrechi-Bouchhiouia ''et al.''1997 The VL output goes preferentially to the
supplementary motor cortex The supplementary motor area (SMA) is a part of the motor cortex of primates that contributes to the control of movement. It is located on the midline surface of the hemisphere just in front of (anterior to) the primary motor cortex leg representa ...
(SMA), to the preSMA and to a lesser extent to the
motor cortex The motor cortex is the region of the cerebral cortex believed to be involved in the planning, control, and execution of voluntary movements. The motor cortex is an area of the frontal lobe located in the posterior precentral gyrus immediately a ...
. The pallidothalamic axons give branches to the pars media of the central complex which sends axons to the premotor and accessory motor cortex.


SNpr to thalamic VA and from there to cortex

The
ventral anterior nucleus The ventral anterior nucleus (VA) is a nucleus of the thalamus. It acts with the anterior part of the ventral lateral nucleus to modify signals from the basal ganglia. Inputs and outputs The ventral anterior nucleus receives neuronal inputs from t ...
(VA) output targets the premotor cortex, the
anterior cingulate cortex In the human brain, the anterior cingulate cortex (ACC) is the frontal part of the cingulate cortex that resembles a "collar" surrounding the frontal part of the corpus callosum. It consists of Brodmann areas 24, 32, and 33. It is involved ...
and the oculomotor cortex, without significant connection to the motor cortex.


See also

* Motor systems *
Nervous system In biology, the nervous system is the highly complex part of an animal that coordinates its actions and sensory information by transmitting signals to and from different parts of its body. The nervous system detects environmental changes th ...
*
Telencephalon The cerebrum, telencephalon or endbrain is the largest part of the brain containing the cerebral cortex (of the two cerebral hemispheres), as well as several subcortical structures, including the hippocampus, basal ganglia, and olfactory bulb. In ...


References


Sources

* * * * * *Bar-Gad, I, Morris, G., Bergman, H. (2003) Information processing, dimensionality, reduction and reinforcement in the basal ganglia. Progr. Neurobiol. 71: 439–477. *Beckstead, R.M. and Frankfurter, A. (1982) The distribution and some morphological features of substantia nigra neurons that project to the thalamus, superior colliculus and pedunculopontine nucleus in monkey. Neuroscience. 7 * * * * * * *DeLong, M.R. and Georgopoulos, A.P. (1980) Motor function of the basal ganglia. In Handbook of Physiology. I-Nervous system. Vol. II Motor control. Part 2. Ch.21. pp. 1017–1061 * * * * * * * * * * * * * * * *Haber, S. and Elde, R. (1981) Correlation between Met-enkephalin and substance P immunoreactivity in the primate globus pallidus. Neurosci. 6: 1291–1297. * *Hikosaka, O. and Wurtz, R.H. (1989) The basal ganglia. in Wurtz and Goldberg (eds) The neurobiology of saccadic eye movements. Elsevier. Amsterdam.pp. 257–281 * * * * * * *Künzle, H. (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. an autoradiographic studyin Macaca fascicularis. Brain. Res. 88: 195–209. *Lavoie, B. and Parent, A. (1994) Pedunculopontine nucleus in the squirrel monkey: projection to the basal ganglia as revealed by anterograde track tracing. J. Comp. Neurol. *Levesque, M., Bédard, A., Cossette, M., Parent, A. (2003) Novel aspects of the chemical anatomy of the striatum and its efferent projections. Chem. Neuroanat. 26: 271–281. * * * * * * * * * * * * * * *Olszewski, J. and Baxter, D. (1954, 2d ed 1982) Cytoarchitecture of the human brain stem. Karger. Basel. * *Parent, M. and Parent, M. (2004) The pallidofugal motor fiber system in primates. Park. Relat. Disord. 10: 203–211. *Parent, M. and Parent, M. (2005) Single-axon tracing and three dimensional reconstruction of centre median-parafascicular thalamic neurons in primates. ''J. Comp. Neurol.'' * *Paxinos, G., Huang, X.F. and Toga, A.W. (2000) The rhesus monkey brain. Academic Press. San Diego *Percheron, G. (1991) The spatial organization of information processing in the striato-pallido-nigral system. In Basal Ganglia and Movement disorders. Bignami. A. (ed).NINS Vol. III. Thieme. Stuttgart pp. 211–234. *Percheron, G. (2003) Thalamus. In The human nervous system. Paxinos, G. and Mai, J. eds) Elsevier, Amsterdam * * *Percheron, G., François, C, Parent, A.Sadikot, A.F., Fenelon, G. and Yelnik, J. (1991) The primate central complex as one of the basal ganglia. In The Basal Ganglia III Bernardi, G. ''et al.'' (eds) pp. 177–186. Plenum . New York * * *Percheron, G., François, C., Yelnik, J., Fenelon, G. (1989) The primate nigro-striato-pallido-nigral system . Not a mere loop. In Crossman, A.R and Sambrook, M.A (eds)Neural mechanisms in disorders of movements. Libey, London *Percheron, G., François, C. and Yelnik, J. and Fenelon, G. (1994) The basal ganglia related system of primates: definition, description and informational analysis. In Percheron, G., McKenzie, J.S., Feger, J. (eds) The basal ganglia IV. Plenum Press New York pp. 3–20 * * * * * * *Sömmerring, T (1800)
Hirn- und Nervenlehre, second edition
p. 31 * *Terminologia anatomica (1998) Thieme, Stuttgart * * *Vicq d'Azyr, (1786)
Traité d'anatomie et de physiologie
Paris. p. 96 *Vogt, C. and O. (1941
Thalamusstudien I-III
''J Psychol Neurol'' 50 (1-2): 32-154. * * * * {{refend Animal nervous system Primate anatomy